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Abstract
We discuss the 1/N expansion of the free energy of N logarithmically
interacting charges in the plane in an external field. For some particular
values of the inverse temperature β, this system is equivalent to the eigenvalue
version of certain random matrix models, where it is referred to as the ‘Dyson
gas’ of eigenvalues. To find the free energy at large N and the structure of
1/N-corrections, we first use the effective action approach and then confirm
the results by solving the loop equation. The results obtained give some new
representations of the mathematical objects related to the Dirichlet boundary
value problem, complex analysis and spectral geometry of exterior domains.
They also suggest interesting links with bosonic field theory on Riemann
surfaces, gravitational anomalies and topological field theories.

PACS number: 02.10.Yn

1. Introduction

In this paper we discuss the large-N expansion of the N-fold integral

ZN =
∫

|�N(zi)|2β

N∏
j=1

e
1
h̄
W(zj ) d2zj . (1.1)

Here W is a function of z = x + iy and z̄ = x − iy, β > 0 is a parameter, �N(zi) =∏N
i>j (zi − zj ) is the Vandermonde determinant and d2z ≡ dx dy. The ‘Planck constant’ h̄ is

introduced here to stress the quasiclassical nature of the large N limit: N → ∞ together with
h̄ → 0 so that t0 = Nh̄ is kept fixed.

The integral is equal to the partition function of the statistical ensemble of N two-
dimensional (2D) Coulomb charges in the external potential W (the ‘Dyson gas’ [1]). Different
aspects of 2D Coulomb plasma were discussed in [2–7]; for further applications, see [8–12].
In this interpretation, the parameter β is the inverse temperature. At large β the Dyson gas
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is believed to form a Wigner crystal. In this paper we assume, however, that β is such that
the system is in the liquid phase as N → ∞. At some particular values of β the model can
be viewed as the eigenvalue version of certain ensembles of random matrices [13] (normal or
complex matrices at β = 1 [14, 15] and normal self-dual matrices at β = 2).

An important piece of information is encoded in the 1/N -expansion of the model.
For random matrices, it has the meaning of the ‘genus expansion’ since the 1/N order of
perturbation theory graphs is determined by their Euler characteristics. In the following, we
prefer to work with the equivalent h̄-expansion, thus emphasizing its semiclassical nature:

log ZN = c(N) +
F0

h̄2 +
F1/2

h̄
+ F1 + O(h̄). (1.2)

The explicit form of the c(N) is given below. It can be absorbed by normalization. With some
abuse of terminology we call h̄2 log ZN a free energy.

When N becomes large new macroscopic structures emerge. The gas segregates into
‘phases’ with zero and nonzero density separated by a very narrow interface. Let D be
the domain in the complex plane where the density is nonzero (it may consist of several
disconnected components). In the first approximation, the gas looks like a continuous charged
fluid trapped in the domain D. The density at any point outside it is exponentially small
as N → ∞.

The first two terms in (1.2), F0 and F1/2, are of purely classical nature in the sense that
only the static equilibrium state of the charges (the saddle point of the integral) contributes
to them. The leading contribution to the free energy, F0, is basically the Coulomb energy of
the charged fluid in the domain D. Taking into account the discrete àtomic’ structure of the
Dyson gas, which implies a short-distance cutoff and entropy of macroscopic states, one is
able to find the correction F1/2 to the ‘classical’ free energy. The next term, F1, apart from
further corrections of the classical nature, includes contribution from small fluctuations about
the equilibrium state.

The β = 1 Dyson gas confined to the line is related to the model of Hermitian random
matrices. The 1/N-expansion of this model beyond the leading order has been obtained in
the seminal paper [16]. Recently, there was a progress in understanding these results from
the algebro-geometric point of view [17–19] and in extending them to other matrix models
[20–22]. In [23], the genus-1 correction was interpreted in terms of free bosons on Riemann
surfaces. Our results for F1 (partially reported in [22]) enjoy a similar interpretation and lead
to interesting connections with spectral geometry of planar domains. In particular, our results
suggest a formula for the determinant of the Laplace operator in exterior planar domains in
terms of the conformal map of the domain onto the exterior of the unit circle. For polynomial
potentials, F1 enjoys a finite determinant representation (6.9) similar to the one known in
topological field theories.

Our results for F1 suggest a new deep connection between the 2D Dyson gas and 2D
quantum gravity. This connection does not explore the well-known approach to random
surfaces through a scaling limit of random matrices. It rather indicates that the density of 2D
Dyson particles can be treated as a fluctuating 2D metric. We do not develop this approach in
this paper.

In the rest of the introductory section we fix the notation and present some standard exact
relations to be used in the sequel. We follow [22, 24, 25].

The main observables in the Dyson gas statistical ensemble are mean values and correlators
of symmetric functions of the particles coordinates. Let A(z1, . . . , zN) be such a function,
then the mean value 〈A〉 is defined by
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〈A〉 = 1

ZN

∫
|�N(zi)|2βA(z1, . . . , zN)

N∏
j=1

e
1
h̄
W(zj ) d2zj .

A particularly important example is the density

ρ(z) = h̄
∑

j

δ(z − zj ), (1.3)

where δ(z) is the two-dimensional δ-function. Instead of correlations of density, it is often
convenient to consider correlations of the field,

ϕ(z) = −β

∫
log |z − ζ |2ρ(ζ ) d2ζ, (1.4)

from which the correlations of density can be found by means of the relation

4πβρ(z) = −�ϕ(z). (1.5)

Here and below, � = 4∂z∂z̄ is the Laplace operator. Clearly, ϕ is the 2D Coulomb potential
created by the charges.

Handling with multipoint correlation functions, it is customary to pass to their connected
parts. For example, in the case of 2-point functions, the connected correlation function is
defined as

〈ρ(z1)ρ(z2)〉c ≡ 〈ρ(z1)ρ(z2)〉 − 〈ρ(z1)〉〈ρ(z2)〉.
The following variational formulae hold true:

〈ρ(z)〉 = h̄2 δ log ZN

δW(z)
, 〈ρ(z1)ρ(z2)〉c = h̄2 δ〈ρ(z1)〉

δW(z2)
= h̄4 δ2 log ZN

δW(z1)δW(z2)
. (1.6)

These formulae are exact for any finite N. They follow from the fact that variation of the
partition function over a general potential W inserts

∑
i δ(z − zi) into the integral. More

generally, the connected part of the (n + 1)-point density correlation function is given by the
linear response of the n-point one to a small variation of the potential.

Let f = f (z, z̄) be a function in the complex plane (for brevity we write simply f (z) in
what follows). Summing over the charges, we get the symmetric function

∑
i f (zi) ≡ Trf ,

where the notation is inspired by related models of random matrices. Mean values and
correlators of such functions are expressed through those of densities:

〈Trf 〉 =
∫

〈ρ(z)〉f (z) d2z, 〈Trf1 Trf2〉c =
∫

〈ρ(z1)ρ(z2)〉cf1(z1)f2(z2) d2z1 d2z2 (1.7)

and so on.

2. Ward identities

Clearly, the integral (1.1) remains the same if we change the integration variables. In other
words, it is invariant under reparametrizations of the z-coordinate. This leads to a number of
Ward identities which are our basic tool to compute the free energy at large N.

2.1. Holomorphic form of the Ward identity at finite N: loop equation

We begin with a holomorphic reparametrization zi → zi + ε(zi). Let us apply it to the integral
(1.1), ZN = ∫

e− 1
h̄
E(z1,...,zN )

∏
j d2zj , where the energy is

−h̄−1E = β
∑
i �=j

log |zi − zj | + h̄−1
∑

j

W(zj ). (2.1)
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In the first order the integrand transforms as

E −→ E +
∑

l

(
∂E

∂zl

ε(zi) +
∂E

∂z̄l

ε(zi)

)
,

while the volume element
∏

j d2zj undergoes the scaling (Weyl) transformation

∏
j

d2zj −→
[

1 +
∑

l

(∂ε(zl) + ∂ε(zl))

]∏
j

d2zj .

The invariance of the integral is then expressed by the identity∑
i

∫
∂

∂zi

(
ε(zi) e− 1

h̄
E
)∏

j

d2zj = 0

valid for any ε. Introducing a suitable cutoff at infinity, if necessary, one sees that the 2D
integral over zi can be transformed, by virtue of the Green theorem, into a contour integral
around infinity and so it does vanish.

Let us take

ε(zi) = ε

z − zi

, (2.2)

where z is a complex parameter. The singularity at the point z does not destroy the above
identity since its contribution is proportional to the vanishing integral

∮
dz̄i/(zi − z) over a

small contour encircling z. We explore this singularity in the following. Therefore, we have
the equality ∑

i

∫ [
− ∂zi

E

z − zi

+
h̄

(z − zi)2

]
e− 1

h̄
E
∏
j

d2zj = 0,

where h̄−1∂zi
E = −β

∑
l �=i

1
zi−zl

− h̄−1∂W(zi). Using the identity

∑
i,j

1

(z − zi)(z − zj )
=
∑
i �=j

2

(z − zi)(zi − zj )
+
∑

i

1

(z − zi)2
,

we rewrite it in the form

〈T 〉 = 0, (2.3)

where we define the holomorphic component of the stress energy tensor

−2βT = 2

h̄

∑
i

∂W(zi)

z − zi

+ β

(∑
i

1

z − zi

)2

+ (2 − β)
∑

i

1

(z − zi)2
. (2.4)

This is the holomorphic form of the Ward identity. In terms of the field ϕ(z) (1.4) it reads

1

2π

∫
∂W(ζ )〈�ϕ(ζ )〉

z − ζ
d2ζ = 〈(∂ϕ(z))2〉 + (2 − β)h̄〈∂2ϕ(z)〉. (2.5)

The correlator at coinciding points is understood as 〈(∂ϕ(z))2〉 = limz′→z〈∂ϕ(z)∂ϕ(z′)〉.
We have got an exact relation between 1- and 2-point correlation functions, valid for any

finite N. For historical reasons, it is called the loop equation. Since correlation functions
are variational derivatives of the free energy, the loop equation is an implicit functional
relation for the free energy. However, it is not a closed relation. It can be made closed by
some additional assumptions or approximations. A combination with the 1/N-expansion is
particularly meaningful.
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2.2. Path integral representation of the partition function and the Weyl form of the
Ward identity

Here we give somewhat heuristic but transparent arguments to calculate the free energy by
using the path integral representation and the Weyl form of the Ward identity. The results will
be justified and refined by means of the loop equation.

Density as a metric. At large N, when the density can be treated as a smooth function, the
partition function of the Dyson gas can be represented as a path integral over densities ρ(z).
Symbolically, we write the partition function as

ZN =
∫

[Dρ] e− 1
h̄2 A[ρ]

, (2.6)

where the action A is to be determined. In this approach ρ(z) dz dz̄ appears as a metric
gab dxa dxb written in the conformal gauge gab = δabρ(z), while the loop equation has the
meaning of the Ward identity with respect to holomorphic diffeomorphisms.

Stress energy tensor. The action in equation (2.6) can be determined by its response to a
change of the metric. The response of the action to variation of the metric is generated by the
stress energy tensor (s.e.t.). Under the Weyl transformation ρ → ρ + δρ, the change of the
action is

−δA = 1

π

∫
Tzz̄δρρ−1 d2z (2.7)

where Tzz̄ is the trace of the s.e.t. The easiest way to determine Tzz̄ is to use the conservation
law of the s.e.t. reflecting the reparametrization invariance of the action. In the conformal
gauge the conservation law reads

∂̄T + ρ∂(ρ−1Tzz̄) = 0, (2.8)

where T is the holomorphic component of the s.e.t. It has already been derived directly from
the finite dimensional integral (1.1). The result (equation (2.4)) can be rewritten as

−2βT (z) = 2β

∫
∂W(ζ )

z − ζ
ρ(ζ ) d2ζ + (∂ϕ(z))2 + (2 − β)h̄∂2ϕ(z). (2.9)

Let us apply ∂̄ to this equality. Taking into account that ∂̄(1/z) = πδ(z) and using (1.5), we
obtain ∂̄T = πρ

(
∂ϕ − ∂W + h̄

2 (2 − β)∂ log ρ
)
. The conservation law then states that

Tzz̄ = πρ
[
W − ϕ − 1

2 (2 − β)h̄ log(eλ+1ρ)
]
, (2.10)

where λ is the integration constant which will be determined by the normalization condition∫ 〈ρ〉 d2z = h̄N .

The action. Integrating equation (2.7) with Tzz̄ given by (2.10), one determines the action5 up
to a constant:

−A = 1

8π

∫
(β−1ϕ(ρ−1�)ϕ + 8πW − 4π(2 − β)h̄ log(eλρ))ρ d2z. (2.11)

Here ρ−1� is the invariant Laplace–Beltrami operator in the metric ρ dz dz̄.
Let us discuss the physical meaning of this action. It consists of energy and entropy

contributions. The energy is given by (2.1). On the scales much larger than the mean distance
between the charges the system can be treated as a charged liquid with the electrostatic energy

−h̄E0[ρ] = β

∫ ∫
ρ(z) log|z − ζ |ρ(z′) d2z d2z′ +

∫
W(z)ρ(z) d2z

= 1

8π

∫
(β−1ϕ(ρ−1�)ϕ + 8πW)ρ d2z. (2.12)

5 The effective action for some other models of random matrices has been discussed in [26, 27].
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It gives the leading term of the action. The correction h̄
2 (2 − β)

∫
ρ log ρ d2z results from the

discrete ‘atomic’ structure of the Dyson gas. The argument below goes back to Dyson [1].
The subleading term of the action consists of two contributions of different nature. One

correction comes from the sum
∑

i �=j log|zi − zj |, when passing to the continuous theory.
Namely, one should exclude the terms with i = j , writing∑

i �=j

log|zi − zj | =
∑
i,j

log|zi − zj | −
∑

j

log �(zj )

or∑
i �=j

log|zi − zj | = h̄−2
∫

ρ(z) log|z − z′|ρ(z′) d2z d2z′ − h̄−1
∫

ρ(z) log �(z) d2z,

where � is a short-distance cutoff (which may depend on the point zj ). It is natural to take the
cutoff to be

�(z) �
√

h̄

ρ(z)
, (2.13)

which is the mean distance between the charges around the point z. This gives the improved
estimate for the electrostatic energy:

E[ρ] = E0[ρ] − 1

2
β

∫
ρ log ρ d2z +

1

2
βh̄N log h̄ − γ1h̄N, (2.14)

where γ1 is a numerical constant which cannot be determined by this argument.
Another correction comes from the integration measure when one passes from the

integration over zj to the integration over macroscopic densities. We can write∏
j

d2zj = N !J [ρ][Dρ],

where [Dρ] is an integration measure in the space of densities, J [ρ] is the Jacobian of this
change of variables and the factor N ! takes into account the symmetry under permutations (all
the states that differ by a permutation of the charges are identical). To estimate the Jacobian,
we divide the plane into N microscopic ‘cells’ such that j th particle occupies a cell of size
�(zj ), where �(zj ) is the mean distance (2.13) between the particles around the point zj .
All the microscopic states in which the particles remain in their cells are macroscopically
indistinguishable. Given a macroscopic density ρ, J [ρ] is then approximately equal to
the integral

∫
cells

∏
j d2zj , with each particle being confined to its own cell. Therefore,

J [ρ] ∼ ∏
j �2(zj ), and thus log J [ρ] (sometimes referred to as entropy of the state with the

macroscopic density ρ) is given by

h̄ log J [ρ] = −
∫

ρ log ρ d2z + h̄N log h̄ + γ2h̄N, (2.15)

where γ2 is another numerical constant6.
The subleading term of the action, − 1

2 (2 − β)
∫

ρ log ρ d2z, is thus the sum of the
contribution due to the short distance cutoff and the entropy contribution. They cancel each
other in the ensemble of normal self-dual matrices (at β = 2).

The Weyl form of the loop equation. The gravitational Ward identities state that the expectation
value of the variation of the action vanishes. They can be written in two complimentary
(holomorphic and Weyl) forms:

〈T 〉 = 0, 〈Tzz̄〉 = 0. (2.16)
6 Combining (2.14), (2.15) and taking into account the factor N ! in the measure, we obtain for the c(N) in
equation (1.2): c(N) = log N ! + N

2 (2 − β) log h̄ + γN , where γ = γ1 + γ2 is a numerical constant.
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The first identity, generated by the holomorphic component of the s.e.t., is the holomorphic
loop equation (2.5). The second one, − 1

π
〈Tzz̄〉 = 〈

ρ δA
δρ

〉 = 0, i.e.,

〈ϕρ〉 − W 〈ρ〉 + 1
2 (2 − β)h̄〈ρ log(eλ+1ρ)〉 = 0, (2.17)

is another form of the loop equation.
The Weyl form of the Ward identity represents the gravitational anomaly. It is based on

the fact that the diffeomorphism (2.2) is not holomorphic at the points zi (positions of the
particles). At these points ∂̄ε(z) = επδ(z − zi) and the holomorphic component T of the
s.e.t. is not analytic. It has simple and double poles.

3. The structure of the 1/N expansion

The large N limit we are interested in (Nh̄ = t0 remains finite) corresponds to a very low
effective temperature of the gas, when fluctuations around equilibrium positions of the charges
are negligible. The main contribution to the partition function then comes from a configuration,
where the charges are ‘frozen’ at their equilibrium positions and, moreover, the gas can be
treated as a continuous fluid at static equilibrium. Mathematically, all this means that the
integral (1.1) is evaluated by the saddle point method, with only the leading contribution being
taken into account. Fluctuations around the saddle point give 1/N corrections.

The path integral (2.6) makes the structure of the 1/N expansion intuitively clear. First we
find an equilibrium (‘classical’) density ρcl which minimizes the action A[ρ]. Then, separating
the classical part of the density, ρ = ρcl + h̄δρ we can write

A[ρ] = A[ρcl] +
h̄2

2

∫
δρ(z)K(z, z′)δρ(z′) d2z + · · ·

where

K(z, z′) = δ2A[ρ]

δρ(z)δρ(z′)

∣∣∣∣
ρ=ρcl

is the kernel of an integral operator K̂ . The path integral representation of the Dyson gas
immediately produces the first two leading contributions to the free energy:

h̄2 log ZN = −A[ρcl] − h̄2

2
log det K̂ + O(h̄3). (3.1)

The first term is the classical value of the action, the second one is due to the Gaussian
fluctuations around the classical solution7.

Since the leading part of the free energy is the classical value of the action, the connected
part of the pair density correlation computed in the leading order is equal to the kernel of the
operator inverse to K̂:

h̄−2〈ρ(z)ρ(z′)〉c = 〈δρ(z)δρ(z′)〉 = K̂−1(z, z′) (h̄ → 0). (3.2)

The term coming from fluctuations (the second term in (3.1)) is not the only contribution to
F1. The action itself and the solution ϕcl of the equation

W − ϕcl = 1

2
(2 − β)h̄ log

(
− eλ+1

4πβ
�ϕcl

)
(3.3)

minimizing the action depend on h̄. Expanding the density, ρcl = ρ0 + h̄ρ1/2 + · · ·, we obtain

A[ρcl] = A[ρ0] − h̄2

2

∫
ρ1/2(z)K(z, z′)ρ1/2(z

′) d2z d2z′ + · · · . (3.4)

7 One can obtain these results by a direct iteration of the Ward identity (2.17) without appealing to the path integral
representation.
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The action evaluated at ρ0 yields the first two leading terms of the free energy. Up to a constant
we write

−A[ρ0] = F0 + h̄F1/2.

The second term in (3.4) contributes to the next order:

−A[ρcl] + A[ρ0] = h̄2F
(1)
1 .

Summing up, we obtain three leading orders of the 1/N expansion (1.2):

F0 = −β

∫ ∫
ρ0(z) log

∣∣∣∣1z − 1

ζ

∣∣∣∣ ρ0(ζ ) d2z d2ζ (3.5)

F1/2 = −1

2
(2 − β)

∫
ρ0 log ρ0 d2z (3.6)

F1 = F
(0)
1 + F

(1)
1 (3.7)

F
(0)
1 = −1

2
log det K̂, (3.8)

F
(1)
1 = 1

2

∫
ρ1/2(z)K(z, z′)ρ1/2(z

′) d2z d2z′. (3.9)

They are expressed entirely through the mean density and the pair correlation function (3.2)
computed in the leading order. This remains to be the case for the higher order corrections as
well.

The mean density and the pair correlation function were found in [24]. Using these results
one is able to compute the free energy by means of (3.5)–(3.7). We summarize the results in
the next section. In the following we derive them on a more solid basis by a direct iteration of
the holomorphic loop equation.

We note also that the h̄-expansion of the free energy can be written in the ‘topological’
form

∑
g�0 h̄2gF̃ g , where each term has its own expansion in ε = (2 − β)h̄: F̃ g =

F̃ (0)
g +

∑
n�1 εnF̃ (n)

g .

4. The main results

We introduce the following notation:

σ(z) = − 1

4π
�W(z), χ(z) = log

√
πσ(z), α =

√
2

β
−
√

β

2
. (4.1)

4.1. Summary of the results

In order to compute the first three leading contributions to the free energy we need the following
results.

• The mean density computed as a power expansion in h̄ vanishes outside a bounded domain
D (we assume that D is connected). Inside the domain the first two orders are

ρ0 = β−1σ, z ∈ D; (4.2)

ρ1/2 = −(2 − β)K̂−1χ z ∈ D. (4.3)

The leading correction to the density ρ1/2 is singular at the boundary (see equation (5.16)).
Corrections exponential in h̄ make the density a smooth function falling exponentially
outside D.
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• The shape of D is determined by the potential W and the number of particles, as described
below (see (4.16)). It is the subject of the inverse potential problem in 2D.

• The pair correlation function of densities is related to the Dirichlet boundary problem in
the complementary domain C\D (the exterior of D). Given a function f (z), let f H (z)

be its harmonic continuation from the boundary to the exterior of D (the solution of the
exterior Dirichlet boundary value problem). The pair correlation function of densities
(and thus the kernel K(z1, z2)) is completely characterized by the integral relation

4πβ

∫
f (z)K̂−1(z, z′)g(z′) d2z d2z′

= −
∫

C\D
∇(f − f H )∇(g − gH ) d2z +

∫
C

∇f ∇g d2z (4.4)

for any smooth functions f, g. Hereafter, K̂−1(z, z′) is the kernel of the operator K̂−1.
The first integral goes over the exterior of the domain D while the second one is over the
entire plane. Note that f − f H vanishes on the boundary.

• The spectral determinant det K̂ in (3.8) is a ratio of two spectral determinants of the
invariant Laplace–Beltrami operators e−2χ� in the conformal metric πσ = e2χ :

log det K̂ = log
det(−e−2χ�C\D)

det(−e−2χ�C)
. (4.5)

One of them acts on the entire plane (and so does not depend on D). The other one is
the Laplace–Beltrami operator in the exterior domain C\D acting on functions vanishing
at the boundary. The determinants of the Laplacians in exterior, unbounded domains
were introduced in [28]. The definition is more involved than the usual zeta-function
regularization. For the details, see [28] and references therein. However, explicit formulae
for the exterior determinants were not known. Our result for F

(0)
1 obtained by a direct

solution of the iterated loop equation suggests such a formula (see below).

To present the results for the free energy we need some more notation. Let ds ≡ |dz|
be the line element along the boundary of D, κ be the local curvature of the boundary, and
eφ dw dw̄ = dz dz̄ be the conformal metric induced by the conformal map w(z) of the exterior
of D onto the exterior of the unit circle.

• Free energy.

F0 = − 1

β

∫
D

∫
D

σ(z) log

∣∣∣∣1z − 1

ζ

∣∣∣∣ σ(ζ ) d2z d2ζ (4.6)

F1/2 = −2 − β

2β

∫
D

σ log(πσ) d2z (4.7)

F
(0)
1 = 1

24π

[∫
|w|>1

|∇(φ + χ)|2 d2w − 2
∮

|w|=1
(φ + χ)|dw|

]

− 1

24π

∫
C

|∇χ |2 d2z − 1

8π

∮
∂D

∂nχ ds (4.8)

F
(1)
1 = − α2

4π

[∫
C\D

|∇(χ − χH )|2 d2z −
∫

C

|∇χ |2 d2z

]
+

µ + 1
4

2π

∮
∂D

∂nχ ds. (4.9)

Note that F1/2 here differs from (3.6) by a constant times N which is a matter of
normalization. We have determined the coefficient µ only at β = 1. In this case
µ = −1/8.
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• Special cases.

(a) A quasiharmonic potential W = −|z|2 + V (z) + V (z). The density is uniform inside
the domain, σ = 1/π, F1/2 = F

(1)
1 = 0,

F1 = − 1

24π

∮
|w|=1

(φ∂nφ + 2φ)|dw| (4.10)

(b) β = 2. In this case the ‘classical’ corrections (F1/2 and F
(1)
1 ) vanish for any potential

W . F
(0)
1 is given by (4.8).

These results, being combined with the spectral determinant representation (3.8), (4.5),
suggest an explicit formula for the determinant of the Laplace–Beltrami operator in exterior
domains. For the interior domains, such a formula has been known due to [29, 30]. It is called
the Polyakov–Alvarez formula. For simply connected domains, it can be written in terms of
the conformal map of the domain onto the unit disc. (A sketch of the derivation is given in
appendix D.) Our results suggest that for the exterior case this formula remains basically the
same, with the interior conformal map being substituted by the exterior one. Below we list
some formulae of this type. Their rigorous proof is a challenging problem which is beyond
the scope of this paper.

• The Polyakov–Alvarez formula for exterior determinants (a conjecture).

log
det(−e−2χ�C\D)

det(−�C\D)
= − 1

12π

∫
C\D

|∇χ |2 d2z +
1

6π

∮
∂D

κχ ds − 1

4π

∫
C\D

�χ d2z

(4.11)

(the divergent terms proportional to the area and perimeter are omitted). In the lhs,
det(−�C\D) is the regularized spectral determinant of the Laplace operator in the
Euclidean metric. This determinant is expressed entirely in terms of the boundary value
of the metric eφ dw dw̄ = dz dz̄ induced by the conformal map w(z) of the exterior of D
onto the exterior of the unit circle:

log det(−�C\D) = 1

12π

∮
∂D

φ(κ + e−φ) ds = 1

12π

∮
|w|=1

(φ∂nφ + 2φ)|dw|. (4.12)

Equations (4.11), (4.12) give

log det(−e−2χ�C\D) = − 1

12π

[∫
|w|>1

|∇(φ + χ)|2 d2w − 2
∮

|w|=1
(φ + χ)|dw|

]

− 1

4π

∫
C\D

�χ d2z (4.13)

• Determinant formula (a conjecture). As a by-product we suggest another interesting
formula for the spectral determinant. Let tk = 1

2π ik

∮
∂D z−kz̄ dz be harmonic moments

of the exterior of the domain D and πt0 be its area. Let us assume that the domain is
such that all the moments at k > m vanish. Then, up to a constant, the exterior spectral
determinant is

−12 log det(−�C\D) = log det
m×m

(
∂3F0

∂t0∂tj ∂tk

)
− (m2 − 3m + 3)

∂2F0

∂t2
0

− (m − 1) log t̄m,

where F0 is given by (4.6) with σ = 1/π . Although the rhs looks like a complex number,
it is actually real, as will be clear from the derivation below (see (6.7), (6.8)).
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4.2. Comments and details

The mean density in the leading order. In the leading order equation (3.3) reads

2β

∫
log|z − ζ |ρ0(ζ ) d2ζ + W(z) = �, � = 1

2
(2 − β)h̄λ.

It must be valid in the domain where ρ �= 0. We assume that this domain (the support of
the density) is bounded, otherwise the normalization condition, i.e., that the integral

∫
ρ d2z

be finite, can hardly be satisfied. We denote the support of the density by D. In this paper,
in order to avoid additional technical complications, we consider only the case of connected
domains D.

Upon taking the z-derivative of the equation above, we get, for z inside the domain D,

∂ϕ0(z) = ∂W(z) (z ∈ D) (4.14)

with

ϕ0(z) = −β

∫
log|z − ζ |2ρ0(ζ ) d2ζ

being the 2D Coulomb potential created by the equilibrium (‘classical’) configuration of
the charges characterized by the density ρ0. This equation just states that the total force
experienced by a charge at any point z, where ρ0(z) �= 0, is zero. Indeed, interaction with the
other charges, ∂ϕ0(z) is compensated by the force ∂W(z) due to the external field.

The solution is conveniently expressed through the function σ (4.1). For the model to be
well defined, we assume that σ(z) > 0 and tends to a positive constant as |z| → ∞. Applying
∂z̄ to both sides of equation (4.14), one obtains the solution ρ0(z) = σ(z)/β inside D and
ρ0(z) = 0 outside it. In terms of the potential ϕ0 this solution reads

ϕ0(z) = −
∫

D
log|z − ζ |2σ(ζ ) d2ζ. (4.15)

Assuming, without loss of generality, that 0 ∈ D and W(0) = 0, we fix � = −ϕ0(0), and so
W(z) = ϕ0(z) − ϕ0(0). Plugging this into (3.5), (3.6), we find the leading contributions to
the free energy (4.6), (4.7). F0 is the electrostatic energy of the domain D charged with the
density σ(z) and with a point-like compensating charge at the origin. Different aspects and
applications of the functional (4.6) were discussed in [8, 24, 25, 31–34].

The most non-trivial part of the problem is to find the shape of D. It is determined by
equation (4.14) and by the normalization condition. Using the Cauchy integral formula, we
can write these conditions in the form{∮

∂D
∂W(ζ ) dζ

z−ζ
= 0 for all z ∈ D∫

D σ(ζ ) d2ζ = βt0.
(4.16)

To solve them for D, provided W(z) and t0 are given, amounts to a version of the inverse
potential problem in two dimensions. We assume that the potential W is such that the solution
exists and is unique. In general, the solution is not available in an explicit form. In this paper
we do not address this question. Our goal is to express corrections to the free energy (4.6) in
terms of the domain D.

Pair correlation functions. The correlation functions in the leading order can be found using
the general variational formulae (1.6), where the exact free energy is replaced by F0:

lim
h̄→0

〈ρ(z)〉 = δF0

δW(z)
= ρ0(z), lim

h̄→0
〈ρ(z1)ρ(z2)〉c = h̄2 δρ0(z1)

δW(z2)
.

Basically, these are linear response relations used in the Coulomb gas theory [2]. In this
approximation, the 2D Coulomb plasma is represented as a continuous charged fluid, so the
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information about its discrete microscopic structure is lost. This is a good approximation at
distances much larger than the mean distance between the charges.

Here are the results for the correlation functions of the type (1.7). The mean value is
obvious from the result for the mean density given above:

h̄β 〈Trf 〉 =
∫

D
σ(z)f (z) d2z + O(h̄). (4.17)

The variation w.r.t. the potential yields the connected parts of pair correlators [24]. To present
the result, we need some elements of the Dirichlet boundary value problem. Given a function
f (z), let f H (z) be its harmonic continuation from the boundary of D to its exterior, i.e., the
solution of the exterior Dirichlet boundary value problem. The solution is given by the formula

f H (z) = − 1

2π

∮
∂D

f (ξ)∂nG(z, ξ)|dξ |, (4.18)

where G(z, ξ) is the Green function of the domain C\D. It is the symmetric function of two
points uniquely determined by the following properties:

�zG(z, ζ ) = 2πδ(z − ζ ) in C\D, G(z, ζ ) = 0 if z ∈ ∂D.

For simply connected exterior domains C\D the Green function can be expressed through the
conformal map w(z) from C\D onto the exterior of the unit circle8:

G(z, ζ ) = log

∣∣∣∣ w(z) − w(ζ )

1 − w(z)w(ζ )

∣∣∣∣ . (4.19)

As ζ → z, it has the logarithmic singularity G(z, ζ ) → log|z − ζ |. The connected pair
correlator (1.7) is then given by [24]

4πβ 〈 Tr f Trg〉c = 4πβ

∫
f (z)K̂−1(z, z′)g(z′) d2z d2z′

=
∫

D
∇f ∇g d2z −

∮
∂D

f ∂ng
H ds, (4.20)

where ∇f is the gradient of the function f . Alternatively, with the help of the Green formula
equation (4.20) can be rewritten as a bulk integral (4.22), where the integration goes over the
exterior domain and the entire plane:

4πβ

∫
f (z)K̂−1(z, z′)g(z′) d2z d2z′ = −

∫
C\D

∇(f − f H )∇(g − gH ) d2z +
∫

C

∇f ∇g d2z.

(4.21)

In particular, for the connected correlation functions of the fields ϕ(z1), ϕ(z2) this formula
gives (if z1,2 ∈ C\D):

1

2βh̄2
〈ϕ(z1)ϕ(z2)〉c = G(z1, z2) − G(z1,∞) − G(∞, z2) − log

|z1 − z2|
r

+ O(h̄), (4.22)

where log r = limz→∞(log|z| + G(z,∞)) is the (external) conformal radius of D.

Spectral determinants. The relation (4.5) between the spectral determinants,

log det K̂ = log det(−e−2χ�C\D) − log det(−e−2χ�C), (4.23)

can be understood using formula (4.20). The presence of the bulk and boundary terms on the
rhs suggests to separate boundary and bulk values of the functions f and g. Specifically, we
write f = fH + f̃ , where fH is the harmonic continuation of the f to the interior of D while

8 Throughout the paper, the map w(z) is normalized as w(z) = z/r + O(1) as z → ∞ with a real r.
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the boundary value of f̃ is zero, and similarly for g. Using the Green theorem, one can see
that the bulk and boundary contributions completely separate9:

4πβ

∫
f K̂−1g =

∫
D

f̃ (−e−2χ�)g̃ e2χ d2z +
∮

∂D
f N̂g ds.

Here

N̂g(z) = ∂+
n gH (z) − ∂−

n gH (z)

is the Neumann jump operator (∂±
n are normal derivatives from inside and outside, respectively)

which sends a function on the boundary to the difference of normal derivatives of its harmonic
continuations inside and outside the domain D. This means that the operator K̂−1 is the direct
sum of the Laplace operator in D (with the Dirichlet b.c.) and the Neumann jump operator.
Therefore, det(K̂−1) � det(−e−2χ�D) det N̂ , and so

F
(0)
1 = 1

2 log det(−e2χ�D) + 1
2 log det N̂ (4.24)

(we omit an irrelevant factor). This expression can be simplified by means of the following
relation between the properly regularized functional determinants [28]:

log det(−e−2χ�D) + log det N̂ + log det(−e−2χ�C\D) = log P(D) + log det(−e−2χ�C).

Here P(D) = ∮
∂D

√
πσ ds is the perimeter of D in the metric πσ .

This relation, rigorously proven in [28], is known in the mathematical literature as the
‘surgery formula’. It is clearly motivated by the ‘cut and paste’ physical arguments. Consider
the free bosonic theory in the whole plane with the quadratic action S0 = ∫ |∇X|2 d2z (for
brevity, we do not indicate the metric explicitly). The path integral

∫
[DX] exp(−S0[X]) is

equal to (det(−�C))−1/2. On the other hand, let us fix a domain D and represent the action as

S0 =
∫

D
|∇X|2 d2z +

∫
C\D

|∇X|2 d2z.

Decompose the field X inside D into the sum of the field X̃ such that X̃ = 0 on ∂D and the
harmonic field XH : X = X̃ + XH . Let X = X̃ + XH be the similar decomposition for the field
X outside D (we then have XH = XH on ∂D). It is easy to see that these fields separate in the
action as follows:

S0[X] = −
∫

D
X̃�X̃ d2z −

∫
C\D

X̃�X̃ d2z +
∮

∂D
XHN̂XH ds.

This separation implies the surgery formula. The term log P(D) is due to the zero mode of
the Neumann jump operator which we did not take into account.

Hence, F
(0)
1 , the ‘quantum’ part of F1, is to be identified with 1

2 log det(−e−2χ�C) −
1
2 log det(−e−2χ�C\D), where the determinants have to be properly regularized. Some
additional efforts are required to refine these arguments. In particular, one should justify
the choice of the background metric in D and take care of the zero mode of the Neumann
jump operator. This is beyond the scope of the present paper. The next section provides an
alternative derivation of F1.

9 We deliberately keep the factor e2χ = πσ in some formulae in order to emphasize the fact that the Laplace–Beltrami
operator is an invariant operator with respect to the metric πσ written in the Weyl gauge. Although the metric cancels
in the formula below, it appears in the spectral determinants.
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5. Corrections to the free energy from the loop equation

In the previous sections we have found that the asymptotic expansion of the partition function
as h̄ → 0 has the form

ZN = N !h̄
1
2 (2−β)N eγN exp


F0

h̄2 +
F1/2

h̄
+ F1 +

∑
k�3

h̄k−2Fk/2


 . (5.1)

The corresponding expansions of the mean values of ρ and ϕ are

〈ρ(z)〉 = ρ0(z) + h̄ρ1/2(z) + h̄2ρ1(z) + O(h̄3) (5.2)

〈ϕ(z)〉 = ϕ0(z) + h̄ϕ1/2(z) + h̄2ϕ1(z) + O(h̄3), (5.3)

where ρi(z) = δFi/δW(z) and ϕi(z) = −β
∫

ρi(ζ ) log|z − ζ |2 d2ζ . The terms F0 and F1/2

are given by (4.6) and (4.7), respectively. The higher corrections are due to fluctuations of the
charged particles around the equilibrium state. In principle, they can be found by expanding
the loop equation (2.5),

1

2π

∫
∂W(ζ )〈�ϕ(ζ )〉

z − ζ
d2ζ = 〈(∂ϕ(z))2〉 + (2 − β)h̄〈∂2ϕ(z)〉, (5.4)

in powers of h̄ and solving the inhomogeneous linear integral equations obtained in this way.
A similar approach has been developed in the case of Hermitian matrix ensembles [16]. This
is what we are going to do in this section. We restrict ourselves by F1/2 and F1. Calculations
of higher order corrections are rather tedious.

5.1. Iteration of the loop equation

As was already pointed out, the main contribution to the partition function as h̄ → 0
comes from a configuration, where the charges are ‘frozen’ at their equilibrium positions.
Correspondingly, the averages take their ‘classical’ values 〈ϕ(z)〉 = ϕ0(z), and multipoint
correlators factorize in the leading order: 〈∂ϕ(z)∂ϕ(z′)〉 = ∂ϕ0(z)∂ϕ0(z

′). Under this
assumption, the loop equation becomes a closed relation for ϕ0:

1

2π

∫
∂W(ζ )�ϕ0(ζ )

z − ζ
d2ζ = (∂ϕ0(z))

2, (5.5)

where we have omitted the last term in (5.4) which is of the next order in h̄. Let us
apply ∂z̄ to both sides of the equation. This yields ∂W(z)�ϕ0(z) = ∂ϕ0(z)�ϕ0(z). Since
�ϕ0(z) ∝ ρ0(z), we obtain

ρ0(z)[∂ϕ0(z) − ∂W(z)] = 0. (5.6)

This equation should be solved with the additional constraints
∫

ρ0(z) d2z = t0 (normalization)
and ρ0(z) � 0 (positivity). The equation tells us that either ∂ϕ0(z) = ∂W(z) or ρ0(z) = 0.
Applying ∂z̄, we get �ϕ0(z) = �W(z). This gives the solution for ρ0 and ϕ0 already obtained
in section 2 by less formal arguments (see (4.15)).

Now we are in a position to develop the h̄-expansion of the loop equation (2.5). First of
all, we rewrite it identically in the form

1

2π

∫
L(z, ζ )〈�ϕ(ζ )〉 d2ζ = (∂ϕ0(z))

2 − (∂(〈ϕ(z)〉
− ϕ0(z)))

2 − 〈(∂[ϕ(z) − 〈ϕ(z)〉])2〉 − (2 − β)h̄〈∂2ϕ(z)〉,
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which is ready for the h̄-expansion. Here

L(z, ζ ) = ∂W(ζ ) − ∂ϕ0(z)

ζ − z
(5.7)

is the kernel of the integral operator on the lhs (the ‘loop operator’). The zeroth order in h̄

gives equation (5.6) which implies the familiar result ϕ0(z) = −∫D log|z − ζ |2σ(ζ ) d2ζ for
the ϕ0. To proceed, one should insert the series (5.3) into the loop equation and separate terms
of order h̄, h̄2 etc. The terms of order h̄ and h̄2 give

1

2π

∫
L(z, ζ )�ϕ1/2(ζ ) d2ζ = −(2 − β)∂2ϕ0(z)

(5.8)
1

2π

∫
L(z, ζ )�ϕ1(ζ ) d2ζ = −[(∂ϕ1/2(z))

2 + (2 − β)∂2ϕ1/2(z)] − ω(z)

where

ω(z) = lim
h̄→0

[h̄−2 lim
z′→z

〈∂ϕ(z)∂ϕ(z′)〉c] (5.9)

is the connected part of the pair correlator at merging points.
The expansion of the loop equation can be continued order by order. In principle, this

gives a recurrence procedure to determine the coefficients ϕk(z). However, each step requires
solving integral equations in the plane, which is not easy to do explicitly. Another difficulty is
that in general one cannot extend these equations to the interior of the support of the density
because the h̄-expansion may break down or change its form there. Indeed, in the domain
where the density is macroscopically nonzero, the microscopic structure of the gas becomes
essential, and one needs to know correlation functions at small scales. Nevertheless, at least
in the first two orders in h̄2 the equations above can be solved assuming that z ∈ C\D. Note
that in this region all the functions ϕk(z) are harmonic. If these functions are known, the
corresponding expansion coefficients of the free energy in can be obtained by ‘integration’ of
the variational formulae (1.6).

5.2. The solution for F1/2

We start with the order h̄. We need to solve the first equation in (5.8). Using (1.5), (1.6), we
rewrite it in the form∫

δF1/2

δW(z)
L(a, z) d2z = 2 − β

2β

∫
D

σ(z) d2z

(a − z)2
(5.10)

where a is an arbitrary point in C\D. Using the variational technique developed in [24] (see
also appendix A), one can verify that F1/2 given in equation (4.7) does solve this equation.

F1/2 from the loop equation. Here we give some details of this calculation. Exactly the same
scheme is used in the next subsection while solving the loop equation for F1.

It is convenient to use the notation (4.1) χ(z) = log
√

πσ(z) in terms of which
F1/2 = − 2−β

πβ

∫
D e2χχ d2z. The variation of this functional reads

δF1/2 = −2 − β

πβ

[∮
∂D

e2χχδn ds +
∫

D
e2χ (2χ + 1)δχ d2z

]
. (5.11)

Here

δn(z) = ∂n(δW(z) − δWH(z))

4πσ(z)
(5.12)
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Figure 1. The normal displacement of the boundary.

is the normal displacement of the boundary (figure 1) under variation of the potential, with the
convention that δn > 0 for outward displacement (for the proof see [24, 25]) and

δχ(z) = −�δW(z)

8πσ(z)
. (5.13)

Note that the lhs of (5.10) has the meaning of the variation of F1/2 under a small change
of the potential proportional to L(a, z), δW(z) ∝ L(a, z) (a plays the role of a parameter).
Therefore, the result is given by (5.11) where δn and δχ are taken from (5.12), (5.13) with
δW(z) = L(a, z). It remains to plug the explicit form of the L(a, z) (5.7) and simplify the
result. In the course of this calculation, the frequently used formulae are

�zL(a, z) = 4π∂z

(
σ(z)

a − z

)
(5.14)

and ∮
∂D

f (z)∂n(L(a, z) − LH(a, z)) ds = 2π i
∮

∂D

f (z)σ (z)

a − z
dz̄ (5.15)

(for any smooth function f ). It is implied that z ∈ D, a ∈ C\D. In these formulae, the Laplace
operator and the harmonic continuation are applied to z. We have∫

δF1/2

δW(z)
L(a, z) d2z

= −2 − β

4πβ

[∮
∂D

χ(z)∂n(L(a, z) − LH(a, z)) ds − 1

2

∫
D
(2χ(z) + 1)�L(a, z) d2z

]

= −2 − β

4πβ

[
−i
∮

∂D

χ(z)σ (z)

z − a
dz̄ +

∫
D
(2χ(z) + 1)∂z

(
σ(z)

z − a

)
d2z

]
.

After transforming the first (contour) integral to the integral over the domain D,∮
∂D

χ(z)σ (z)

z − a
dz̄ = −2i

∫
D

∂z

(
χ(z)σ (z)

z − a

)
d2z,

one can see that the result is indeed equal to the rhs of (5.10).

The results for ρ1/2 and ϕ1/2. The corrections to the mean values of ρ and ϕ are conveniently
expressed through the function χ (4.1) and its harmonic continuation χH (z) from the boundary
of D to its exterior. In terms of these functions

ρ1/2(z) = δF1/2

δW(z)
= 2 − β

4πβ

(
�(z; D)�χ(z) − δ(z; ∂D)∂n(χ(z) − χH(z)) − 1

2
δ′(z; ∂D)

)
.

(5.16)

Here �(z; D) is the characteristic function of the domain D (1 if z ∈ D and 0 otherwise),
δ(z; ∂D) is the δ-function with the support on the boundary (

∫
f (z)δ(z; ∂D) d2z = ∮

∂D f (z)|dz|
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for any smooth function f ) and δ′(z; ∂D) is its ‘normal derivative’, i.e., a function such that∫
f (z)δ′(z; ∂D) d2z = − ∮

∂D ∂nf (z)|dz|. The singular function ρ1/2 is to be understood as
being integrated with any smooth test function. The first term in the rhs describes the change
of density in the bulk. The second one (the ‘simple layer’) describes a shift of the boundary of
the domain D. The last one, the ‘double layer’, means smoothing off the edge of the density
support (for β �= 2). Using the operator K̂ introduced in section 3, the correction ρ1/2 can be
written as

ρ1/2(z) = −(2 − β)[K̂−1χ ](z) − 2 − β

8πβ
δ′(z; ∂D).

At β = 2, the correction ρ1/2 vanishes. The first correction to 〈ϕ(z)〉 reads

ϕ1/2(z) =
{

−(2 − β)
[
χ(z) − χH (∞) + 1

2

]
, z ∈ D

−(2 − β)
[
χH (z) − χH (∞)

]
, z ∈ C\D.

(5.17)

Due to the double layer, this function is discontinuous across the boundary. Therefore, for
z ∈ C\D we have ∂ϕ1/2(z) = −(2 − β)∂χH (z).

5.3. The solution for F1

Now we have to solve the second equation in (5.8), where ∂ϕ1/2 = −(2 − β)∂χH and ω(z) is
still to be found. If the point z is in C\D, then equation (4.22) yields [24]

〈∂ϕ(z)∂ϕ(z′)〉c = 2βh̄2∂z∂z′(G(z, z′) − log|z − z′|) + O(h̄3)).

Since the rhs is regular for all z, z′ ∈ C\D, the points can be merged without any difficulty and
the result does not depend on the particular limit z′ → z. Using the expression of the Green
function (4.19) through the conformal map w(z), we obtain

12 lim
z′→z

∂z∂z′(G(z, z′) − log|z − z′|) = w′′′(z)
w′(z)

− 3

2

(
w′′(z)
w′(z)

)2

= {w; z},
where we use the standard notation for the Schwarzian derivative. The function ω is thus
given by

ω(z) = β

6
{w; z}. (5.18)

After plugging the above result for ϕ1/2, the second equation of (5.8) acquires the form:∫
δF1

δW(ζ )
L(z, ζ ) d2ζ = α2[(∂χH (z))2 − ∂2χH(z)] +

1

12
{w; z}, (5.19)

where α =
√

2
β

−
√

β

2 (as is in (4.1)). We consider this equation for z ∈ C\D, where both the
sides are harmonic functions.

Our strategy is as follows. We make a guess for F1 and then show that the variational
derivative obeys (5.19). More precisely, let I trial be a trial functional of D (and thus of W )
represented as an integral over the domain D or its boundary. The form of the trial functionals
is suggested by the path integral arguments of the previous section. Since F1 has dimension
0, we consider only dimensionless functionals. We want to find

∫
δI trial/δW(z)L(a, z) d2z

and compare with the rhs of (5.19) (again, a is a point in C\D). The latter quantity can be
computed by the method outlined in the previous subsection.

A comment on the meaning of the calculations below is in order. They consist of
recognizing that the lhs of equation (5.19) is a variation of F1 over the holomorphic component
of the metric and then applying the Polyakov–Alvarez formula (4.11). We plan to elaborate
on this point elsewhere.



8950 A Zabrodin and P Wiegmann

The structure of equation (5.19) suggests to find different terms of the solution separately.
Let us start with the term proportional to α2. Here are the main steps of the calculations.
Consider the functional

I (1) = 1

4π

(∫
D

|∇χ |2 d2z −
∮

∂D
χ∂nχ

H ds

)
. (5.20)

Its variation is (see appendix B)

δI (1) = 1

4π

∮
∂D

[∂n(χ − χH )]2δn ds +
1

2π

∮
∂D

δχ∂n(χ − χH ) ds − 1

2π

∫
D

δχ�χ d2z.

(5.21)

In the same way as for F1/2 one can check that∫
δI (1)

δW(z)
L(a, z) d2z = (∂χH (a))2 − ∂2χH (a);

so F1 is expected to contain the term α2I (1) (compare with F
(1)
1 given by (4.9)). This

contribution is of the ‘classical’ nature since no fluctuations of the charges positions are taken
into account.

Next, we consider

I (2) = − 1

2π

∮
|w|=1

(φ∂nφ + 2φ)|dw| (5.22)

(we remind that φ(w) = log|z′(w)| where z(w) is the conformal map from the exterior of the
unit circle onto C\D inverse to the w(z)). The variation of this functional is found in appendix
B (equation (B.5)):

δI (2) = 1

2π

∮
(ν2(z){w; z} + ν2(z){w; z} − 2κ2(z))δn(z) ds. (5.23)

Here

ν(z) = |w′(z)| w(z)

w′(z)
(5.24)

is the normal unit vector to the boundary10 and

κ(z) = ∂n log

∣∣∣∣ w(z)

w′(z)

∣∣∣∣
is the local curvature of the boundary (counted w.r.t. the outward pointing normal vector).
Using the rules explained above, we get∫

δI (2)

δW(z)
L(a, z) d2z = − 1

4π i

∮
∂D

ν2{w; z} + ν2{w; z} − 2κ2

a − z
dz̄.

Now consider the functional

I (3) = 1

2π

∫
D

|∇χ |2 d2z +
1

π

∮
∂D

κχ ds (5.25)

with the variation

δI (3) = 1

2π

∮
∂D

(|∇χ |2 − 2∂2
s χ + 2κ∂nχ

)
δn ds +

1

π

∮
∂D

(κ + ∂nχ)δχ ds − 1

π

∫
D

�χδχ d2z.

10 It is worthwhile to mention here the useful formulae for normal and tangential derivatives, ∂nf = ν∂zf +
ν∂z̄f, ∂sf = iν∂zf − iν∂z̄f , and for the line element on the boundary curve, ds = dz

iν(z)
= iν(z) dz̄.
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The variational derivative δI (3)/δW looks rather complicated. However, for its convolution
with L(a, z) one obtains a surprisingly simple result:∫

δI (3)

δW(z)
L(a, z) d2z = − 1

2π

∮
∂D

κ ds

(a − z)2
= 1

2π i

∮
∂D

κ2 + iκ ′

a − z
dz̄

(note that χ cancels!). Combining it with the corresponding result for I (2), we obtain∫
δ(I (2) − I (3))

δW(z)
L(a, z) d2z = − 1

4π i

∮
∂D

ν2{w; z} + ν2{w; z} + 2iκ ′

a − z
dz̄

= − 1

2π i

∮
∂D

ν2(z){w; z}
a − z

dz̄ = 1

2π i

∮
∂D

{w; z}
a − z

dz = {w(a); a}
where (A.2) has been used.

At last, the functional

I (0) = 1

2π

∫
D

�χ d2z (5.26)

with the variation

δI (0) = 1

2π

∮
∂D

(�χδn + ∂n(δχ)) ds

is a ‘zero mode’ of the loop operator:∫
δI (0)

δW(z)
L(a, z) d2z = 0.

Summing all the contributions with appropriate coefficients that follow from the rhs of
the loop equation, we thus find F1:

F1 = F
(1)
1 + F

(0)
1 = α2I (1) + 1

12 (I (2) − I (3)) + µI(0),

where the coefficient µ cannot be determined from the loop equation restricted to C\D. (In
the whole plane, the loop operator does not have zero modes but we have to be restricted
to C\D because of unknown properties of correlation functions at small distances in the
bulk.) For β = 1, the coefficient µ can be fixed by comparison with the explicit solution for
centrosymmetric potentials (see appendix C):

µ = − 1
8 (at β = 1).

With the help of the Green theorem, we present the result in the form appearing in
section 4:

F1 = 1

24π

[∫
|w|>1

|∇(φ + χ)|2 d2w − 2
∮

|w|=1
(φ + χ)|dw|

]

+
α2

4π

[∫
D

|∇χ |2 d2z −
∮

∂D
χ∂nχ

H ds

]

+
µ

2π

∫
D

�χ d2z − 1

24π

∫
C

|∇χ |2 d2z, (5.27)

where χ in the first two terms is regarded as a function of w via χ = χ(z(w)). Let us also list
some equivalent forms:

F1 = − 1

24π

∮
|w|=1

(φ∂nφ + 2φ)|dw|−1 − 6α2

24π

[∫
D

|∇χ |2 d2z + 2
∮

∂D
κχ ds

]

− α2

4π

∮
∂D

χ(∂nχ
H + 2κ) ds +

µ

2π

∮
∂D

∂nχ ds, (5.28)
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F1 = 1 − 6α2

24π

[∫
|w|>1

|∇(φ + χ)|2 d2w − 2
∮

|w|=1
(φ + χ)|dw| −

∫
C

|∇(φ + χ)|2 d2z

]

+
α2

4π

[∫
|w|>1

|∇(φ + χH )|2 d2w − 2
∮

|w|=1
(φ + χH )|dw|

]
+

µ

2π

∫
D

�χ d2z.

(5.29)

6. Models with quasiharmonic potentials

The models with W of the form

W = −|z|2 + V (z) + V (z)

(‘quasiharmonic potentials’) generalize the Ginibre–Girko ensemble [15]. Note that for
potentials of this form the integral (1.1) diverges unless V is quadratic or logarithmic with
suitable coefficients. The simplest way to give sense to the integral when it diverges at infinity
is to introduce a cutoff, i.e., integrate over a suitably chosen big but finite domain in the plane.
Then the large-N expansion is well defined and the results for the general potential presented
above still make sense. For details and rigorous proofs, see [35].

In the case of quasiharmonic potentials the formula for F1 drastically simplifies since the
function χ vanishes, and so only the first integral in (5.28) survives:

F1 = − 1

24π

∮
|w|=1

(φ∂nφ + 2φ)|dw|. (6.1)

In the particular case β = 1,W(z) = −zz̄ the formula yields F1 = − 1
12 log t0, which coincides

with the result of [5] obtained by a direct calculation.
According to the conjecture of section 4.1, equation (6.1) can be understood as the formula

for the regularized determinant of the Laplace operator �C\D = 4∂z∂z̄ in the exterior domain
C\D with the Dirichlet boundary conditions:

F1 = − 1
2 log det(−�C\D). (6.2)

The first term is the bulk contribution (for the metric induced by the conformal map it reduces to
a boundary integral), while the second term is a net boundary term. The ‘classical’ contribution
F

(1)
1 to F1 vanishes in this case.

6.1. The case of rational ∂V (z) (quadrature domains)

There is a special class of domains for which our result (6.1) can be made more explicit.
Consider domains such that z′(w) is a rational function,

z′(w) = r

m−1∏
i=0

w − ai

w − bi

.

In the mathematical literature, they are called quadrature domains [36]. One can show that
quadrature domains are density supports for the models with potentials such that ∂V (z) is
a rational function. All the points ai and bi must be inside the unit circle, otherwise the
map z(w) is not conformal. As w → ∞, z(w) can be represented as a Laurent series
of the form z(w) = rw + u0 + O(w−1). On the unit circle we have |dw| = dw

iw and
φ(w) = 1

2 (log z′(w)+log z̄′(w−1)), where the first and the second term (the Schwarz reflection)
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are analytic outside and inside it, respectively. (Recall that z̄(w) ≡ z(w̄) and our notation
z̄′(w−1) means dz̄(u)/du at the point u = w−1.) Plugging this into (6.1), we get

F1 = − 1

24π i

∮
|w|=1

log z′(w)

[
1

2
∂w log z′(w) +

1

w

]
dw

− 1

24π i

∮
|w|=1

log z̄′(w−1)
dw

w
− 1

48π i

∮
|w|=1

log z̄′(w−1)
z′′(w)

z′(w)
dw.

The integrals can be calculated by taking residues either outside or inside the unit circle. The
poles are at ∞, at 0, and at the points ai and bi . The result is

F1 = − 1

24


log r4 +

∑
z′(ai )=0

log z̄′(a−1
i

)−
∑

z′(bi )=∞
log z̄′(b−1

i

) . (6.3)

If the potential V (z) is polynomial, V (z) = ∑m
k=1 tkz

k , i.e., tk = 0 as k > m for some m > 0,
then the series for the conformal map z(w) truncates: z(w) = rw +

∑m−1
l=0 ulw

−l and

z′(w) = r

m−1∏
i=0

(1 − aiw
−1)

is a polynomial in w−1 (all poles bi of z′(w) merge at the origin). Then the last sum in (6.3)
becomes m log r and the formula (6.3) gives

F1 = − 1

24
log


r4

∏
z′(aj )=0

z̄′(a−1
j

)
r


 = − 1

24
log


r4

m−1∏
i,j=0

(1 − āiaj )


 . (6.4)

This formula is essentially identical to the genus-1 correction to the free energy of the Hermitian
2-matrix model with a polynomial potential computed in [20].

6.2. The determinant formula

For polynomial V (z)F1 enjoys an interesting determinant representation. Set

Dm := det

(
∂3F0

∂t0∂tj ∂tk

)
0�j,k�m−1

where F0 is the leading contribution to the free energy regarded as a function of t0 and the
coefficients tk (and the complex conjugate coefficients t̄k). We need the residue formula for
the third-order derivatives of F0 [37]:

∂3F0

∂tj ∂tk∂tl
= 1

2π i

∮
|w|=1

hj (w)hk(w)hl(w)

z′(w)z̄′(w−1)

dw

w
. (6.5)

Here hj (w) is the following polynomial in w of degree j :

hj (w) = w
d

dw
[(zj (w))+] for j � 1 and h0(w) = 1,

where (· · ·)+ is the positive degree part of the Laurent series. Using this formula, we compute

Dm = 1

(2π i)m

∮
|w0|=1

dw0

w0
. . .

∮
|wm−1|=1

dwm−1

wm−1

det[hj (wj )hk(wj )]∏m−1
l=0 z′(wl)z̄′(w−1

l

) . (6.6)

Clearly, the determinant in the numerator can be substituted by 1
m

det2(hj (wk)) and

det[hj (wk)] = (m − 1)!r
1
2 m(m−1)�m(wi), where �m(wi) is the Vandermonde determinant.
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Each integral in (6.6) is given by the sum of residues at the points ai inside the unit circle (the
residues at wi = 0 vanish). Computing the residues and summing over all permutations of the
points ai , we get

Dm = (−1)
1
2 m(m−1)((m − 1)!)2rm(m−3)

∏
j am−1

j∏
i,j (1 − aj āi)

. (6.7)

It is not difficult to see that
∏m

i=1 ai = (−1)mm(m − 1)rm−2 t̄m (we regard tm, the last nonzero
coefficient of the V (z), as a fixed parameter) and so we represent F1 (6.4) in the form

F1 = 1
24 log Dm − 1

12 (m2 − 3m + 3) log r − 1
24 (m − 1) log t̄m + const, (6.8)

where const is a numerical constant. Since ∂2
t0
F0 = 2 log r (see [24, 25]), we obtain that F1,

for models with polynomial potentials of degree m, is expressed through derivatives of F0.
According to the conjecture of section 4.1, the formula below suggests a new

representation of the spectral determinant of the Laplace operator. Up to a constant we
have

−1

2
log det(−�C\D) = 1

24
log det

m×m

(
∂3F0

∂t0∂tj ∂tk

)

− 1

24
(m2 − 3m + 3)

∂2F0

∂t2
0

− 1

24
(m − 1) log t̄m (6.9)

where j, k run from 0 to m−1. Similar determinant formulae are known for genus-1 corrections
to free energy in topological field theories [38]. However, they have not been identified with
spectral determinants.

7. Spectral determinant of the Laplace–Beltrami operator for the Dirichlet problem

To give an interpretation of the result for F1, we recall the formula for the spectral determinant
of the Laplace–Beltrami operator in a compact bounded domain M in the plane (assumed to
have topology of a disc). For the derivation, see [29, 30, 39, section 1] and appendix D.
The Laplace operator acts on functions vanishing on the boundary (the Dirichlet boundary
conditions). Being written in the Weyl gauge, gab = e2�δab, it has the form

1√
g

∂a(
√

ggab∂b) = 4 e−2�(w)∂w∂w̄ = e−2��M,

where w is a holomorphic coordinate on M. The Polyakov–Alvarez formula gives the
difference between the spectral determinants of the Laplace operators in the metric e2� dw dw̄

and in some fixed reference metric. Assuming that the latter is just the standard flat metric
dw dw̄ in the plane, the formula reads (see (4.42) in the first paper in [30])

log det(−e−2��M) = − 1

4πε2

∫
M

e2� d2w +
1

4
√

πε

∮
∂M

e�|dw| +
1

6
log ε

− 1

12π

∫
M

|∇�|2 d2w − 1

6π

∮
∂M

κ̂�|dw| − 1

4π

∫
M

�� d2w. (7.1)

Here ε is an ultraviolet cutoff and κ̂ is the curvature of the boundary w.r.t. the reference metric.
The first three terms diverge as ε → 0. A sketch of the derivation is given in appendix D.

We are going to show that our result for the ‘quantum’ part of the free energy, F
(0)
1 , given

by (4.8), (5.27)–(5.29), agrees with (7.1) generalized to exterior domains. Indeed, let us adopt
this formula for the exterior of the domain D. For this purpose, we map it to the exterior of
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the unit circle Uext by the conformal map z → w(z) and choose M in (7.1) to be the exterior
of the unit circle, M = Uext, with the metric �(w) = χ(z(w)) + φ(w). Then

e2� dw dw̄ = e2χ dz dz̄. (7.2)

Taking into account that for the exterior of the unit circle κ̂ = −1, we rewrite (7.1) as

log det(−e−2χ�C\D) = − 1

4ε2

∫
C\D

σ d2z +
1

4ε

∮
∂D

√
σ |dz| +

1

6
log ε

− 1

12π

[∫
|w|>1

|∇�|2 d2w − 2
∮

|w|=1
�|dw|

]
− 1

4π

∫
|w|>1

�� d2w. (7.3)

On the complex plane C (without boundary) with coordinate z in the metric e2χ we have

log det(−e−2χ�C) = − 1

4ε2

∫
C

σ d2z +
1

3
log ε − 1

12π

∫
C

|∇χ |2 d2z. (7.4)

Therefore, we can write

log
det(−e−2χ�C)

det(−e−2χ�C\D)
= − t0

4ε2
+

1

6
log ε − P(D)

4
√

πε

+
1

12π

[∫
|w|>1

|∇�|2 d2w − 2
∮

|w|=1
�|dw| − 3

∮
|w|=1

∂nχ |dw|
]

− 1

12π

∫
C

|∇χ |2 d2z. (7.5)

The first two divergent terms can be absorbed by normalization and so we ignore them in what
follows. The third one is proportional to the perimeter of the density support (in the metric
e2χ ):

P(D) =
∮

∂D

√
πσ ds.

It can be directly verified that the perimeter functional obeys the relation∫
δP (D)

δW(z)
L(a, z) d2z = 0 (a ∈ C\D);

so all the three divergent terms are ‘zero modes’ of the loop operator (for the first two this is
obvious).

Comparing (7.5) with (5.27), we can represent F1 in the form

F1 = 1

2
log

det′(−e−2χ�C)

det′(−e−2χ�C\D)
+

α2

4π

[∫
D

|∇χ |2 d2z −
∮

∂D
χ∂nχ

H ds

]
+

µ + 1
4

2π

∮
∂D

∂nχ ds.

(7.6)

Here log det′ means the finite (as ε → 0) part of (7.5). It is the ‘quantum’ part of the answer.
Obviously, F1 is related to gravitational anomalies. This relation awaits further clarification.
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Appendix A. Some useful formulae

Here we fix the notation and collect some formulae often used in the main text.

Integral formulae. Throughout the paper, all contours are assumed to be anticlockwise oriented
and the normal vector looks outward D.

• Cauchy’s integral formula (f is any smooth function):

1

2π i

∮
∂D

f (ζ ) dζ

z − ζ
− 1

π

∫
D

∂ζ̄ f (ζ ) d2ζ

z − ζ
=
{−f (z), z ∈ D

0, z ∈ C\D.

• The Green formula:
∫

D f �g d2z = − ∫
D ∇f ∇g d2z +

∮
∂D f ∂ng|dz|.

• The Hadamard variational formula: the variation of the Green function of C\D under
small deformation of the domain D with the normal displacement δn(z) is

δG(z1, z2) = 1

2π

∮
∂D

∂nG(z1, ξ)∂nG(z2, ξ)δn(ξ)|dξ |.

Variation of contour integrals. Consider the contour integral of the general form:∮
∂D

F(f (z), ∂nf (z)) ds,

where F is any fixed function. Calculating the linear response to the deformation of the
contour (described by the normal displacement δn(z)), one should vary all items in the
integral independently and add the results. There are four elements to be varied: the support
of the integral

∮
, the ∂n, the line element ds and the function f . By variation of the

∮
we mean

integration of the old function over the new contour. This gives
∮

δn∂nF ds. The change of
the slope of the normal vector results in δ(∂n) = −∂s(δn)∂s. The rescaling of the line element
gives δ ds = κδn ds, where κ(z) is the local curvature of the boundary curve. At last, we have
to vary the function f if it explicitly depends on the contour. In particular, if this function is
the harmonic extension of a contour-independent function on the plane, its variation on the
boundary is given by

δf H (z) = ∂n(f (z) − f H (z))δn(z), z ∈ ∂D.

This is an equivalent form of the Hadamard variational formula. (For more details, see, e.g.,
[24, 32], where the Hadamard formula is extensively used.)

The curvature. The local curvature of the boundary curve is defined as κ = dθ/ds, where
θ is the angle between the outward pointing normal vector to the curve and the x-axis. The
formula

κ(z) = ∂n log

∣∣∣∣ w(z)

w′(z)

∣∣∣∣ (A.1)

is an immediate consequence of the definition. For practical calculations, we also need the
Laplace operator at boundary points in terms of normal (∂n) and tangential (∂s) derivatives,

� = ∂2
n + ∂2

s + κ∂n,

and the formula for the tangential derivative of the curvature, κ ′ = ∂sκ , through the boundary
value of the Schwarzian derivative {w; z} = w′′′

w′ − 3
2

(
w′′
w′
)2

:

κ ′(z) = Im(ν2(z){w; z}) (A.2)

(ν is the complex unit normal vector (5.24)). The variation of the curvature under small
deformations of the contour is

δκ(z) = − (
∂2
s + κ2(z)

)
δn(z). (A.3)
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Indeed, κ + δκ = d(θ+δθ)

ds+δ ds
, where δθ = ∂s(δn) is the change of the slope of the normal vector.

The line element is rescaled as ds → ds + κδn ds, so δ ds = κδn ds. In the first order in δn

we then have κ + δκ = κ − ∂2
s (δn) − κ2δn, that is, (A.3).

Appendix B. Variations of the trial functionals

Let us consider in detail the most complicated case of the functional

I (2) = − 1

2π

∮
|w|=1

(φ∂nφ + 2φ)|dw|.

To vary this functional, it is convenient to pass to the z-plane and introduce the function

q(z) = log

∣∣∣∣w′(z)
w(z)

∣∣∣∣ . (B.1)

It is harmonic in C\D with the logarithmic singularity at infinity: q(z) = −log|z| + O(1/|z|)
as z → ∞. Obviously, qH (z) = log|w′(z)| = q(z) + log|w(z)|. In terms of this function, the
curvature is κ(z) = −∂nq(z), and

I (2) = 1

2π

∮
∂D

(−q∂nq + q eq) ds. (B.2)

We would like to find the linear response of this quantity to small deformations of the contour.
For clarity, let us deal with the two terms in (B.2) separately. We apply the rules given

above and get, after some cancellations,

δ

∮
q∂nq ds =

∮
δn|∇q|2 ds +

∮
(δq∂nq + q∂nδq) ds

where |∇q|2 = (∂nq)2 + (∂sq)2. Using the Green theorem and the behaviour of the function
q at infinity, one can see that the contributions of the two terms in the second integral are the
same. The variation δq at the boundary can be found by means of the Hadamard formula. The
result is

δq = −e−q∂n(e
qδn)H . (B.3)

Therefore,

δ

∮
q∂nq ds =

∮
[|∇q|2 − 2 eq∂n(e

−q∂nq)H ]δn ds

where we used the Green formula again. The harmonic continuation is achieved by means of
the identity e−q∂nq = 2Re

(
w
w′ ∂zq

)
, whose rhs is explicitly harmonic and thus provides the

desired harmonic continuation. Next, a straightforward calculation shows that

eq∂n(e
−q∂nq)H = −eq∂s(e

−q∂sq) = (∂sq)2 − ∂2
s q

and we get

δ

∮
q∂nq ds =

∮ (
2∂2

s q − |∇q|2 + 2κ2
)
δn ds.

The combination 2∂2
s q − |∇q|2 can be transformed as follows:

2∂2
s q − |∇q|2 = −2

[
ν2(z)

(
∂2
z q − (∂zq)2

)
+ c. c.

]
,

where 2
(
∂2
z q − (∂zq)2

) = {w; z}+ 1
2

(
w′
w

)2
and {w; z} is the Schwarzian derivative. Combining

these formulae, we get

2∂2
s q − |∇q|2 = −(ν2{w; z} + ν2{w; z} + |w′|2). (B.4)
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Now to the second term in (B.2). We have

δ

∮
q eq ds =

∮
δn∂nq eq +

∮
(eqδq + q eqδq) ds

=
∮

δn eq∂n(q − qH ) ds = −
∮

δn e2q ds,

where we use the identity ∂n log|w(z)| = |w′(z)| and take into account that |w′| = eq at the
boundary. Combining the results, we obtain

δI (2) = 1

2π

∮
(ν2(z){w; z} + ν2(z){w; z} − 2κ2(z))δn(z) ds. (B.5)

Variations of other trial functionals go in a similar way. Here we just list the results:

δ

∫
D

|∇χ |2 d2z =
∮

∂D
|∇χ |2δn ds + 2

∫
D

∇χ∇(δχ) d2z δ

∮
∂D

κχ ds

=
∮

∂D

(−∂2
s χ + κ∂nχ

)
δn ds +

∮
∂D

κδχ ds δ

∮
∂D

χ∂nχ
H ds

=
∮

∂D
(|∇χ |2 − (∂n(χ − χH))2)δn ds + 2

∮
∂D

δχ∂nχ
H ds δ

∫
D

�χ d2z

=
∮

∂D
�χδn ds +

∮
∂D

∂n(δχ) ds.

To express the right-hand sides through the variation of the potential W , one should plug the
formulae (5.12), (5.13).

Appendix C. The centrosymmetric potential at β = 1

In the centrosymmetric case the potential W does not depend on the angular coordinate in
the plane. We set W(z) = Wrad(|z|2). At β = 1, the orthogonal polynomials technique is
applicable. The symmetry of the potential implies that the orthogonal polynomials are simply
monomials zn. Therefore, the expression for the partition function simplifies considerably:

ZN =
N−1∏
n=0

hn

where

hn =
∫

C
|z|2n e

1
h̄
W d2z = π

∫ ∞

0
xn e

1
h̄
Wrad(x) dx.

Introduce the function

h(t) =
∫ ∞

0
e

1
h̄
(Wrad(x)+t log x) dx, (C.1)

then

log ZN = N log π +
N−1∑
n=0

log h(nh̄). (C.2)

We are going to find the h̄-expansion of log ZN using the h̄-expansion of h(t) obtained by the
saddle point method and the Euler–MacLaurin formula. The necessary formulae are collected
below.

h̄-expansion of the free energy: a direct calculation. First of all, we note that the density
support D is an axially symmetric domain. We assume that it is a disc (not a ring) of radius R.
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The density of eigenvalues is σ(z) = σrad(|z|2). Clearly, πσrad(x) = −∂x(x∂xWrad(x)). The
radius R is a function of t0 defined by the relation

t0 = −R2W ′
rad(R

2) (C.3)

(here and below prime means f ′(x) = df/dx). This relation follows directly from the
definition

t0 = − 1

4π

∫
D

�W d2z = − 1

4π

∮
∂D

∂nW ds

taking into account that ∂nW = 2RW ′
rad(R

2).
The saddle point xc in (C.1) is determined by the equation

t = −xcW
′
rad(xc). (C.4)

Note the similarity with (C.3): xc is the squared radius of the disc for the filling n = t/h̄.
We assume that there is only one saddle point. The standard technique (see (C.8)) yields the
following asymptotic expansion as h̄ → 0:

h(t) = e
1
h̄
(Wrad(xc)−W ′

rad(xc)xc log xc)

√
2h̄xc

σrad(xc)
(1 + h̄p1 + O(h̄2)), (C.5)

where p1 is given by (C.9) with S(x) = Wrad(x) + t log x. It is easy to calculate

S ′′(xc) = −πσrad(xc)

xc

S ′′′(xc) = −πσ ′
rad(xc)

xc

+ 2
πσrad(xc)

x2
c

SIV (xc) = −πσ ′′
rad(xc)

xc

+ 3
πσ ′

rad(xc)

x2
c

− 6
πσrad(xc)

x3
c

.

Plugging this stuff into (C.9), we get

p1 = 1

24πσrad(xc)

(
5xc

(
σ ′

rad(xc)

σrad(xc)

)2

− 11
σ ′

rad(xc)

σrad(xc)
− 3xc

σ ′′
rad(xc)

σrad(xc)
+

2

xc

)
.

In terms of the function χ(z) = χrad(|z|2) = 1
2 log(πσrad) this expression acquires the form

p1 = 1

πσrad(xc)

(
1

3
xc(χ

′
rad(xc))

2 − 1

4
∂x(x∂xχrad(x))

∣∣∣∣
x=xc

− 2

3
χ ′

rad(xc) +
1

12xc

)
.

The Euler–MacLaurin formula applied to (C.2) yields

log ZN = N log π +
1

h̄

∫ t0

0
log h(t) dt − 1

2
log h(t0) +

h̄

12
∂t log h(t)

∣∣∣
t=t0

+ C,

where C is a constant which does not depend on t0. (It can be found by a more detailed analysis
around the point t = 0.) From (C.5) we have

log h(t) = 1

h̄
(Wrad(xc) − W ′

rad(xc)xc log xc) + log
√

2πh̄

+
1

2
log xc − χrad(xc) + h̄p1 + O(h̄2). (C.6)

The integral over t is transformed into the integral over xc using dt/dxc = πσrad(xc):∫ t0

0
log h(t) dt = π

∫ R2

0
σrad(x) log h(t (x)) dx.
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Finally, we obtain

F0 = π

∫ R2

0
(Wrad(x) − W ′

rad(x)x log x)σrad(x) dx

F1/2 = −π

2

∫ R2

0
σrad(x) log(πσrad(x)) dx (C.7)

F1 = − 1

12
log R2 − 1

6
χrad(R

2) − 1

4
R2χ ′

rad(R
2) +

1

3

∫ R2

0
x(χ ′

rad(x))2 dx.

Reducing the 2D integrals in (5.27) to 1D integrals or values of χrad, χ
′
rad at the boundary,∫

D
|∇χ |2 d2z = 4π

∫ R2

0
x(χ ′

rad(x))2 dx∮
∂D

κχ ds = 2πχrad(R
2)∫

D
�χ d2z = 4πR2χ ′

rad(R
2),

and taking into account that ∂nχ
H = 0, we have

F1 = − 1

12
log R2 − 1

6
χrad(R

2) +
1

3

∫ R2

0
x(χ ′

rad(x))2 dx + 2µR2χ ′
rad(R

2).

Comparing with (C.7), we conclude that µ = −1/8.

Asymptotic formulae. Evaluating the integral
∫

e
1
h̄
S(x) dx by the saddle point method around

the critical point xc, S
′(xc) = 0, we get the asymptotic expansion as h̄ → 0:∫

e
1
h̄
S(x) dx = e

1
h̄
S(xc)

√
2πh̄

|S ′′(xc)| (1 + h̄p1 + h̄2p2 + · · ·), (C.8)

where

pn = �
(
n + 1

2

)
√

2π(2n)!
|S ′′(xc)|

(
d

dx

)2n [
−S(x) − S(xc)

(x − xc)2

]−n− 1
2

∣∣∣∣∣
x=xc

.

In particular,

p1 = 5(S ′′′(xc))
2 + 3|S ′′(xc)|SIV (xc))

24|S ′′(xc)|3 . (C.9)

In the text we also need the Euler–MacLaurin formula
N−1∑
n=0

f (n) =
∫ N

0
f (x) dx − 1

2
(f (N) − f (0)) +

1

12
(f ′(N) − f ′(0)) + · · · .

Appendix D. Derivation of the Polyakov–Alvarez formula

In this appendix we outline the derivation of the formula (4.11) for the spectral determinant
of the Laplace operator. We use the notation introduced in the main text.

Consider a free Bose field X defined in a planar (compact) domain B and vanishing on
its boundary. For simplicity, we assume that B has topology of a disc. Let e2χ dz dz̄ be a
background conformal metric on B. The classical action,

S = 1

4π

∫
B
X(−e−2χ�)X e2χ d2z, (D.1)
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does not depend on the metric but the quantum theory does. The log of partition function
of this field F = − 1

2 log det(−e−2χ�B) represents the spectral determinant of the Laplace–
Beltrami operator e−2χ�B = 4 e−2χ(z)∂z∂z̄ acting on functions vanishing on the boundary (the
Dirichlet b.c.). Let z(w) be the univalent conformal map from the unit disc U onto B and
φ = log|dz/dw|. This map induces the conformal metric e2� dw dw̄ on U in the holomorphic
coordinate w, with the conformal factor

e2� = e2χ |z′(w)|2 = e2(χ+φ) = √
g.

The Laplace–Beltrami operator in the coordinate w is 4 e−2�(w)∂w∂w̄. The spectral determinant
of this operator can be expressed in terms of � and the curvature of the boundary. The result
is referred to as the Polyakov–Alvarez formula [29, 30]. Below we give a short derivation of
this formula.

Variation of the partition function over the metric introduces the trace Tzz̄ = 〈|∂X|2〉 and
the holomorphic component T = 〈(∂X)2〉 of the stress energy tensor:

− 1

π
Tzz̄ = 1

2

(
δ

δχ
+

δ

δφ

)
F = √

g
δF
δ
√

g
. (D.2)

The trace of the s.e.t. has bulk and boundary parts, and so has F :

Tzz̄ dz dz̄ = T bulk
zz̄ dz dz̄ + T

boundary
zz̄ ds, F = Fbulk + Fboundary. (D.3)

The holomorphic component is continuous across the boundary in a regular fashion. The
components Tzz̄ and T are related by the conservation law

∂(
√

gTzz̄) +
√

g∂̄T = 0 (in the bulk) (D.4)

2∂sT
boundary
zz̄ + Im(ν2T ) = 0 (on the boundary), (D.5)

where ν is the unit normal vector to the boundary.
The strategy to compute F is as follows. First we compute the holomorphic component T,

then find Tzz̄ through the conservation laws (D.4), (D.5). Finally we integrate equation (D.2).
The simplest way to proceed is as follows. Since the holomorphic component is continuous

across the boundary, it depends only on the overall metric
√

g = e2χ+2φ . Therefore, it is
sufficient to compute T at χ = 0. In the coordinate w, the domain is the unit disc, so
T (w)(dw)2 vanishes. The conformal transformation w → z generates the metric e−2φ and
transforms the holomorphic component of the stress energy tensor as T → T + 1

12 {w; z}.
Therefore11,

T (z) = 1
12 {w; z} = − 1

24 [(∂ log|dz/dw|2)2 + 2∂2 log|dz/dw|2]

at χ = 0, or, more generally,

T = − 1
24 ((∂ log

√
g)2 + 2∂2 log

√
g) (D.6)

at χ �= 0. The next step is to find the trace of the stress energy tensor. The bulk part,

T bulk
zz̄ = 1

48� log
√

g = 1
24�χ, (D.7)

follows from (D.4) and represents the gravitational anomaly. It is proportional to the scalar
curvature of the metric in the bulk and does not depend on the shape of the domain. This
gives (after integrating equation (D.2)) the textbook result for the bulk part of the spectral
determinant:

Fbulk = − 1

96π

∫
U

log
√

g� log
√

g d2w. (D.8)

11 One can obtain this textbook result by the direct computation of 〈∂X(z)∂X(z′)〉 ∝ ∂z∂z′G(z, z′) and extracting the
finite part of the result as z′ → z with the help of the explicit formula for the Green function (4.19).
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We will use the same trick in order to compute the boundary part. Let us first find it at
χ = 0. Comparing (D.5) and (A.2) we conclude that it is 1

24∂sκ , where κ is the local curvature

of the boundary. This gives the boundary part of the gravitational anomaly: T
boundary
zz̄ = − 1

24κ .
At χ �= 0 one should simply add the boundary curvature generated by the metric e2χ to the
local curvature κ:

T
boundary
zz̄ ds = − 1

24 (κ + ∂nχ) ds. (D.9)

Using the formula κ ds = (∂nφ + e−φ) ds = ∂nφ ds + |dw| (equivalent to (A.1)), the boundary
contribution to the gravitational anomaly can be written as

T
boundary
zz̄ ds = − 1

48 (2|dw| + ∂n log
√

g ds).

This form is ready for integration with the result

Fboundary = 1

96π

∮
∂U

log
√

g∂n log
√

g|dw| +
1

24π

∮
∂U

log
√

g|dw| +
1

16π

∮
∂U

∂n log
√

g|dw|,
(D.10)

where we take into account that ∂n on ∂D is e−φ∂n on the unit circle. Combining with (D.8),
we obtain the finite part of (4.11) (recall that log

√
g = 2�).
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